Neurological Sciences and Neurophysiology

ORIGINAL ARTICLE
Year
: 2020  |  Volume : 37  |  Issue : 2  |  Page : 63--69

Analysis of vestibular-evoked myogenic potentials in the vestibular migraine


Belgin Tutar1, Güler Berkiten1, Onur Akan2, Ziya Saltürk1, Berk Gürpinar1, Semih Karaketir1, Tolgar Lütfi Kumral1, Yavuz Uyar1, Ömür Biltekin Tuna1 
1 Department of ENT (Ear, Nose and Throat), Okmeydani Education and Research Hospital, Istanbul, Turkey
2 Department of Neurology, Okmeydani Education and Research Hospital, Istanbul, Turkey

Correspondence Address:
Belgin Tutar
Department of ENT (Ear, Nose and Throat), Okmeydani Education and Research Hospital, Istanbul
Turkey

Objectives: The objective of this study is to determine the subclinical vestibular dysfunction of patients with vestibular migraine (VM) in the interattack period who had no vestibular symptoms. We assessed ascending utricular and descending saccular pathways using cervical vestibular-evoked myogenic potentials (cVEMP) and ocular vestibular-evoked myogenic potentials (oVEMP) in patients with VM and a healthy control group and then compared the electrophysiologic findings with each other. Materials and Methods: Between January 2017 and January 2018, 116 patients (aged 18–62 years) were enrolled in the study. The study group consisted of 68 women with VM and the control group comprised 48 healthy women. Results: For cVEMP findings, the mean left ear P1 latency of the VM group was statistically significantly longer than that of the control group (P = 0.024; P < 0.05). No statistical significance was found in left ear N1 latency, P1-N1 interpeak intervals and mean amplitudes between the VM and the control groups (P > 0.05). Amplitude asymmetry ratios (AARs) were not statistically significantly different between the two groups in cVEMP (P > 0.05). In terms of oVEMP findings, no statistically significant difference was found in the right ear parameters of N1, P1, P1-N1 intervals, and amplitudes of the VM and the control groups (P > 0.05). The left ear oVEMPs of the VM group showed absent responses in 12 cases and were statistically significant compared with the control group (P = 0.037; P < 0.05). The AARs were significantly greater for the the VM group than the control group in oVEMP (P = 0.006; P < 0.05). Conclusion: These electrophysiologic findings suggest that peripheral vestibular structures such as the utricle, saccule and also other central vestibular structures might be affected in VM. Patients with VM had subclinical vestibular dysfunction despite being in the interattack period. To support the diagnosis of VM, VEMPs are easy and cost-effective tests.


How to cite this article:
Tutar B, Berkiten G, Akan O, Saltürk Z, Gürpinar B, Karaketir S, Kumral TL, Uyar Y, Tuna &B. Analysis of vestibular-evoked myogenic potentials in the vestibular migraine.Neurol Sci Neurophysiol 2020;37:63-69


How to cite this URL:
Tutar B, Berkiten G, Akan O, Saltürk Z, Gürpinar B, Karaketir S, Kumral TL, Uyar Y, Tuna &B. Analysis of vestibular-evoked myogenic potentials in the vestibular migraine. Neurol Sci Neurophysiol [serial online] 2020 [cited 2022 Aug 15 ];37:63-69
Available from: http://www.nsnjournal.org/article.asp?issn=2636-865X;year=2020;volume=37;issue=2;spage=63;epage=69;aulast=Tutar;type=0